Neural Network Computation by In Vitro Transcriptional Circuits

نویسندگان

  • Jongmin Kim
  • John J. Hopfield
  • Erik Winfree
چکیده

The structural similarity of neural networks and genetic regulatory networks to digital circuits, and hence to each other, was noted from the very beginning of their study [1, 2]. In this work, we propose a simple biochemical system whose architecture mimics that of genetic regulation and whose components allow for in vitro implementation of arbitrary circuits. We use only two enzymes in addition to DNA and RNA molecules: RNA polymerase (RNAP) and ribonuclease (RNase). We develop a rate equation for in vitro transcriptional networks, and derive a correspondence with general neural network rate equations [3]. As proof-of-principle demonstrations, an associative memory task and a feedforward network computation are shown by simulation. A difference between the neural network and biochemical models is also highlighted: global coupling of rate equations through enzyme saturation can lead to global feedback regulation, thus allowing a simple network without explicit mutual inhibition to perform the winner-take-all computation. Thus, the full complexity of the cell is not necessary for biochemical computation: a wide range of functional behaviors can be achieved with a small set of biochemical components.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Curve Consideration in Makespan Computation Using Artificial Neural Network Approach

This paper presents an alternative method using artificial neural network (ANN) to develop a scheduling scheme which is used to determine the makespan or cycle time of a group of jobs going through a series of stages or workstations. The common conventional method uses mathematical programming techniques and presented in Gantt charts forms. The contribution of this paper is in three fold. First...

متن کامل

Design, Development and Evaluation of an Orange Sorter Based on Machine Vision and Artificial Neural Network Techniques

ABSTRACT- The high production of orange fruit in Iran calls for quality sorting of this product as a requirement for entering global markets. This study was devoted to the development of an automatic fruit sorter based on size. The hardware consisted of two units. An image acquisition apparatus equipped with a camera, a robotic arm and controller circuits. The second unit consisted of a robotic...

متن کامل

Identification of Wind Turbine using Fractional Order Dynamic Neural Network and Optimization Algorithm

In this paper, an efficient technique is presented to identify a 2500 KW wind turbine operating in Kahak wind farm, Qazvin province, Iran. This complicated system dealing with wind behavior is identified by using a proposed fractional order dynamic neural network (FODNN) optimized with evolutionary computation. In the proposed method, some parameters of FODNN are unknown during the process of i...

متن کامل

A neural network approach for fault diagnosis of large-scale analogue circuits

An approach for fault diagnosis of large-scale analogue circuits using neural networks is presented in the paper. This method is based on the fault dictionary technique, but it can deal with soft faults due to robustness of neural networks. Because the neural networks can create the fault dictionary, memorize and verify it simultaneously, computation time is drastically reduced. Rather than dea...

متن کامل

Population Models of Temporal Differentiation

Temporal derivatives are computed by a wide variety of neural circuits, but the problem of performing this computation accurately has received little theoretical study. Here we systematically compare the performance of diverse networks that calculate derivatives using cell-intrinsic adaptation and synaptic depression dynamics, feedforward network dynamics, and recurrent network dynamics. Exampl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004